
18.06 Professor Edelman Quiz 2 November 7, 2012

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1 T 9 2-132 Andrey Grinshpun 2-349 3-7578 agrinshp

2 T 10 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

3 T 10 2-146 Andrey Grinshpun 2-349 3-7578 agrinshp

4 T 11 2-132 Rosalie Belanger-Rioux 2-331 3-5029 robr

5 T 12 2-132 Geoffroy Horel 2-490 3-4094 ghorel

6 T 1 2-132 Tiankai Liu 2-491 3-4091 tiankai

7 T 2 2-132 Tiankai Liu 2-491 3-4091 tiankai



1 (27 pts.)

P is any n× n Projection Matrix. Compute the ranks of A,B, and C below. Your method

must be visibly correct for every such P, not just one example.

a) (8 pts.) A = (I − P )P.

Since P is a projection matrix, P 2 = P , so (I−P )P = P −P 2 = P −P = 0 and has rank 0.

b) (10 pts.) B = (I − P )− P. (Hint: Squaring B might be helpful.)

B2 = (I − 2P )2 = I2 − 4P + 4P 2 = I. The rank of I is n. The rank of B2 is at most the

rank of B and the rank of B is at most n, so B must have rank n.

c) (9 pts.) C = (I − P )2012 + P 2012.

Note I − P is a projection matrix, so (I − P )2012 = I − P and P 2012 = P , so the above

simplifies to I, which has rank n.
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2 (22 pts.)

Consider a 4× 4 matrix

A =


0 x y z

x 1 0 0

y 0 1 0

z 0 0 1

 .

a) (17 pts.) Compute |A|, the determinant of A, in simplest form.

The answer is detA = −x2 − y2 − z2. But before we discuss how to get this answer, I’d

like to call your attention to that fact that the expression −x2 − y2 − z2 is symmetric in

the three variables x, y, z. That is to say, if we swap the roles of any two of these variables,

the expression as a whole is unchanged. Why might we have predicted that detA has this

property? Well, if we swap rows 2 and 3 of A, and then swap columns 2 and 3 of the result,

we end up with

A′ =


0 y x z

y 1 0 0

x 0 1 0

z 0 0 1

 ,

which is the same as A, but with the roles of x and y swapped. In performing one row swap

and one column swap, we have multiplied the determinant by (−1)2 = 1, so A′ has the same

determinant as A. From this we conclude that detA, whatever it is, must be an expression

that’s symmetric in x and y. Similar considerations show that it’s symmetric in all three

variables x, y, z.

Anyway, let’s actually compute detA. Here were some of the most common ways from the

students’ tests:
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• By cofactor expansion (p. 260) in the first row (or the first column), using the big

formula (p. 257) or any other method for each 3× 3 minor:

detA = 0

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣− x

∣∣∣∣∣∣∣∣∣
x 0 0

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣+ y

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣− z

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣
= 0− x(x) + y(−y)− z(z)

= −x2 − y2 − z2.

Note the alternating + and − signs in the cofactors:

C11 =

∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣ , C12 = −

∣∣∣∣∣∣∣∣∣
x 0 0

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣ , C13 =

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣ , C14 = −

∣∣∣∣∣∣∣∣∣
x 1 0

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣ .
In general, the formula is Cij = (−1)i+j detMij.

• By cofactor expansion in the second row (or the second column), using the big formula

or any other method for each 3× 3 minor:

detA = −x

∣∣∣∣∣∣∣∣∣
x y z

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣∣∣
0 y z

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣− 0

∣∣∣∣∣∣∣∣∣
0 x z

y 0 0

z 0 1

∣∣∣∣∣∣∣∣∣+ 0

∣∣∣∣∣∣∣∣∣
0 x y

y 0 1

z 0 0

∣∣∣∣∣∣∣∣∣
= −x(1) + 1(−y2 − z2)

= −x2 − y2 − z2.

The cofactor C22, for example, can be calculated using the big formula for 3×3matrices:∣∣∣∣∣∣∣∣∣
0 y z

y 1 0

z 0 1

∣∣∣∣∣∣∣∣∣ = 0 · 1 · 1 + y · 0 · z + z · y · 0− 0 · 0 · 0− y · y · 1− z · 1 · z = −y2 − z2.
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• By the big formula (pp. 258–259) for 4 × 4 matrices. The big formula has 24 terms

(one for each 4× 4 permutation matrix), but only three of them are nonzero:

detA = x2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ y2

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ z2

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

These three permutation matrices all have determinant −1, because they are one row

exchange away from the identity matrix, so

detA = −x2 − y2 − z2.

• By performing row operations to reach an upper triangular matrix. First exchange

row 1 with another row to put a pivot in the top-left corner; to make the future

computations simpler, let’s swap row 1 with row 4:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

x 1 0 0

y 0 1 0

0 x y z

∣∣∣∣∣∣∣∣∣∣∣∣
;

here we have a − sign because row exchanges negate the determinant (rule 2, p. 246).

Now subtract x/z times row 1 from row 2, and y/z times row 1 from row 3:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

0 1 0 −x/z

0 0 1 −y/z

0 x y z

∣∣∣∣∣∣∣∣∣∣∣∣
;

remember that such operations do not affect the determinant (rule 5, p. 247). Finally
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subtract x times row 2 and y times row 3 from row 4:

|A| = −

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 1

0 1 0 −x/z

0 0 1 −y/z

0 0 0 z + x2/z + y2/z

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we can mutiply the diagonal entries (rule 7, p. 247) to find that

|A| = −z · 1 · 1 · (z + x2/z + y2/z) = −x2 − y2 − z2.

• By performing row operations to reach a lower triangular matrix. From row 1 of A,

we subtract x times row 2, y times row 3, and z times row 4. These operations do not

change the determinant, so

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣

−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2 − y2 − z2.

In other words, we may factorize A as

A =


1 x y z

0 1 0 0

0 0 1 0

0 0 0 1




−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

 ,

so the product rule (rule 9, p. 248) says

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x y z

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

−x2 − y2 − z2 0 0 0

x 1 0 0

y 0 1 0

z 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2 − y2 − z2.
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b) (5 pts.) For what values of x, y, z is A singular?

A square matrix is singular if and only if its determinant equals zero. So we are asked to

find all triples (x, y, z) such that

detA = −x2 − y2 − z2 = 0,

or in other words

x2 + y2 + z2 = 0.

So far, we have been talking about real numbers x, y, z in this course, so the left-hand side

is just the square of the distance from (x, y, z) to the origin in R3. Since only the origin is

at a distance 0 from the origin, the matrix A is singular if and only if x = y = z = 0.
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3 (22 pts.)

The 3× 3 matrix


a b c

d e f

g h i

 has QR decomposition


a b c

d e f

g h i

 = Q


r11 r12 r13

0 r22 r23

0 0 r33

 .

a) (7 pts.) What is r11 in terms of the variables a, b, c, d, e, f, g, h, i? (but not any of the

elements of Q.)

You should probably remember that r11 is the norm of the first column of the matrix on the

left, which we will call A. But let’s rederive it. So, when we do a QR decomposition, we

always start with the first column of our matrix, here the vector (a d g)T , and we normalize it

to obtain the first column of Q: q1 = (a d g)T/
∥∥(a d g)T

∥∥. Now, if we look at the first column

of A = QR, we have (a d g)T = r11 · q1 + 0 · q2 + 0 · q3 = r11 · q1 = r11 · (a d g)T/
∥∥(a d g)T

∥∥,
which implies that r11 =

∥∥(a d g)T
∥∥ =

√
a2 + d2 + g2.

b) (15 pts.) Solve for x in the equation,

QTx =


1

0

0

 ,

expressing your answer possibly in terms of r11,r22, r33 and the variables a, b, c, d, e, f, g, h, i,

(but not any of the elements of Q.)

Look at the product

QTx =


1

0

0


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row by row: we take the first row of QT , that is, the first column of Q, and take its dot

product with x to obtain 1. We also take the second and third row of QT , that is, the second

and third column of Q, and take their dot products with x to obtain 0. This means that x

is perpendicular to the last 2 columns of Q. But because Q has orthonormal columns and

we are in R3, this can only mean that x is a multiple of the first column, say x = zq1 for

some real number z. But remember we said that qT1 x = 1, which means qT1 zq1 = zqT1 q1 = 1,

but we know qT1 q1 = 1 because the columns of Q have norm 1. So clearly z = 1 and x is q1,

which we found in the previous question. So x = q1 = (a d g)T/
∥∥(a d g)T

∥∥ = (a d g)T/r11.
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4 (29 pts.)

a) (15 pts.) Use loops or otherwise to find a basis for the left nullspace of the incidence

matrix A for the graph above. We will start you off, one basis vector is



1

0

0

−1

1

0


.

The incidence matrix is 6 by 4. Since the graph is connected, the nullspace has dimension 1,

it is the line generated by (1, 1, 1, 1)T , therefore, the matrix has rank 3. It follows that the

left nullspace has dimension 6− 3 = 3.

We use the result of page 425 of the book :
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A basis of the left nullspace of the incidence matrix is given by a set of independant loops.

In this case, we need to find 3 independant loops in the graph. It is easy to check that the

3 small loops are independant :

A basis of the left nullspace is :



1

0

0

−1

1

0


,



0

1

0

−1

0

1


,



0

0

1

0

−1

1


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There are 24 ways to relabel the four nodes in the graph in part(a). Edge labels remain

unchanged. One of the 24 ways is pictured above. This produces 24 incidence matrices A.

b) (7 pts.) Is the row space of A independent of the labelling? Argue convincingly either

way.

Yes it is independent. Indeed, the incidence matrix of a connected graph with 4 nodes has

the line generated by (1, 1, 1, 1)T as its nullspace whatever the graph is. In particular, we

see that the nullspace is independant of the labelling. Since the row space is the orthogonal

of the nullspace it is also independant of the labelling.

c) (7 pts.) Is the column space of A independent of the labelling? Argue convincingly either

way.

Yes, it is independent. Relabelling the nodes has the effect of permuting the columns of the

incidence matrix. The columns space is the space of linear combinations of the columns of

the matrix, therefore, it is independent of the way the columns are ordered in the matrix.
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